The quinolone antibiotics represented by enrofloxacin (ENRO) are harmful to the ecological environment and human health due to illegal excessive use, resulting in increasing food residues and ENRO levels in the environment. To this end, we developed a MIPs-SERS method using surface-enhanced Raman spectroscopy (SERS) and molecularly imprinted polymers (MIPs) to detect ENRO in food matrices. Firstly, a layer of silver nanoparticles (Ag NPs) with the best SERS effect was synthesized on the surface of copper rods as the enhancing material by in situ reductions, and then MIPs targeting ENRO were prepared by the native polymerization reaction, and the MIPs containing template molecules wrapped on the surface of silver nanoparticle films (Ag NPs-MIPs) were obtained. Our results showed that the Ag NPs-MIPs could specifically identify ENRO from the complex environment. The minimum detection limit for ENRO was 0.25 ng/mL, and the characteristic peak intensity of ENRO was linearly correlated to the concentration with a linear range of 0.001~0.1 μg/mL. The experimental results showed that in comparison to other detection methods, the rapid detection of ENRO in food matrices using Ag NPs-MIPs as the substrate is reliable and offers a cost-effective, time-saving, highly selective, and sensitive method for detecting ENRO residues in real food samples.