In the big data context, it is very frequent to manage the analysis of missing values. This is especially relevant in the field of statistical analysis, where this represents a thorny issue. This study proposes a strategy for data enrichment in presence of sparse matrices. The research objective consists in the evaluation of a possible distinction of behaviour among observations in sparse matrices with missing data. After selecting among the multiple imputation methods, an innovative technique will be presented to impute missing observations as a negative position or a neutral opinion. This method has been applied to a dataset measuring the interaction between users and social network pages for some Italian newspapers.
Read full abstract