Aims/hypothesisInvestigation of dietary therapy for diabetes has focused on meal size and composition; examination of the effects of meal sequence on postprandial glucose management is limited. The effects of fish or meat before rice on postprandial glucose excursion, gastric emptying and incretin secretions were investigated.MethodsThe experiment was a single centre, randomised controlled crossover, exploratory trial conducted in an outpatient ward of a private hospital in Osaka, Japan. Patients with type 2 diabetes (n = 12) and healthy volunteers (n = 10), with age 30–75 years, HbA1c 9.0% (75 mmol/mol) or less, and BMI 35 kg/m2 or less, were randomised evenly to two groups by use of stratified randomisation, and subjected to meal sequence tests on three separate mornings; days 1 and 2, rice before fish (RF) or fish before rice (FR) in a crossover fashion; and day 3, meat before rice (MR). Pre- and postprandial levels of glucose, insulin, C-peptide and glucagon as well as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide were evaluated. Gastric emptying rate was determined by 13C-acetate breath test involving measurement of 13CO2 in breath samples collected before and after ingestion of rice steamed with 13C-labelled sodium acetate. Participants, people doing measurements or examinations, and people assessing the outcomes were not blinded to group assignment.ResultsFR and MR in comparison with RF ameliorated postprandial glucose excursion (AUC−15–240 min-glucose: type 2 diabetes, FR 2,326.6 ± 114.7 mmol/l × min, MR 2,257.0 ± 82.3 mmol/l × min, RF 2,475.6 ± 87.2 mmol/l × min [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 1,419.8 ± 72.3 mmol/l × min, MR 1,389.7 ± 69.4 mmol/l × min, RF 1,483.9 ± 72.8 mmol/l × min) and glucose variability (SD−15–240 min-glucose: type 2 diabetes, FR 1.94 ± 0.22 mmol/l, MR 1.68 ± 0.18 mmol/l, RF 2.77 ± 0.24 mmol/l [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 0.95 ± 0.21 mmol/l, MR 0.83 ± 0.16 mmol/l, RF 1.18 ± 0.27 mmol/l). FR and MR also enhanced GLP-1 secretion, MR more strongly than FR or RF (AUC−15–240 min-GLP-1: type 2 diabetes, FR 7,123.4 ± 376.3 pmol/l × min, MR 7,743.6 ± 801.4 pmol/l × min, RF 6,189.9 ± 581.3 pmol/l × min [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 3,977.3 ± 324.6 pmol/l × min, MR 4,897.7 ± 330.7 pmol/l × min, RF 3,747.5 ± 572.6 pmol/l × min [p < 0.05 for MR vs RF and MR vs FR]). FR and MR delayed gastric emptying (Time50%: type 2 diabetes, FR 83.2 ± 7.2 min, MR 82.3 ± 6.4 min, RF 29.8 ± 3.9 min [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 66.3 ± 5.5 min, MR 74.4 ± 7.6 min, RF 32.4 ± 4.5 min [p < 0.05 for FR vs RF and MR vs RF]), which is associated with amelioration of postprandial glucose excursion (AUC−15–120 min-glucose: type 2 diabetes, r = −0.746, p < 0.05; healthy, r = −0.433, p < 0.05) and glucose variability (SD−15–240 min-glucose: type 2 diabetes, r = −0.578, p < 0.05; healthy, r = −0.526, p < 0.05), as well as with increasing GLP-1 (AUC−15–120 min-GLP-1: type 2 diabetes, r = 0.437, p < 0.05; healthy, r = 0.300, p = 0.107) and glucagon (AUC−15–120 min-glucagon: type 2 diabetes, r = 0.399, p < 0.05; healthy, r = 0.471, p < 0.05). The measured outcomes were comparable between the two randomised groups.Conclusions/interpretationMeal sequence can play a role in postprandial glucose control through both delayed gastric emptying and enhanced incretin secretion. Our findings provide clues for medical nutrition therapy to better prevent and manage type 2 diabetes.Trial registration:UMIN Clinical Trials Registry UMIN000017434.Funding:Japan Society for Promotion of Science, Japan Association for Diabetes Education and Care, and Japan Vascular Disease Research Foundation.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-015-3841-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Read full abstract