PurposeThe paper covers mega infrastructure construction supply chain (MICSC) in Engineering-Procurement-Construction (EPC) projects, where the frequent occurrence of risk incidents has greatly affected human life. The research aims to establish a risk evaluation index system for MICSC in EPC projects, exploring what risk factors lead to risk incidents and measure the importance and causality of all these risk factors.Design/methodology/approachThe research applies a combination of quantitative and qualitative analysis methodology to process data sequentially. In the first place, risk factors for MICSC in EPC projects are extracted and identified from literature survey and expert interviews. In the second place, an integration model fuzzy Analytic Hierarchy Process (f-AHP) and fuzzy Decision-making Trial and Evaluation Laboratory (f-DEMATEL) is constructed to comprehensively analyze all these risk factors.Findings12 primary risk factors and 36 secondary risk factors comprise the risk evaluation index system for MICSC in EPC projects from 178 literature and 5 professionals. The results indicate that Political Situation (F1), Social Security (F2) and Management Mode (F8) are critical risk factors, where F1 and F2 are cause factors and F8 is an effect factor.Originality/valueThere are three main contributions of this paper. First and foremost, from the perspective of the research content, no other study has been able to assess risk factors for MICSC in EPC projects, while embedding nine phases of the whole project life cycle and six subjects of stakeholders into a risk evaluation index system. Additionally, from the perspective of research method, a combined model incorporating f-AHP and f-DEMATEL is constructed to avoid the one-sidedness of a single model. Last but not least, from the perspective of practical significance, focusing on the critical risk factors, a series of effective measures are formulated to make appropriate management decisions for nodal enterprises of MICSC, which can improve their risk management capabilities.
Read full abstract