Binary biofuel is the best alternative source that completely replaces petroleum-based fuel. In this study, we have experimented with the waste cooking oil and cedarwood oil as biofuel in a DI CI engine for various proportions and related its combustion, emission, and performance characteristics to those of base diesel. This study aims to eliminate the utilization of fossil fuel in a diesel engine by introducing green binary fuel (low viscous fuel resulting from the blending of cedarwood oil with WCO biodiesel) successfully. The objective of the study is to convert cedarwood – WCO into green binary fuel and investigate its performance, emission, and combustion properties. The transesterification process is utilized for the enhancement of WCO as biodiesel. It occasioned a reduction in brake thermal efficiency as the addition of waste cooking oil in the blend increased. At the same time, the maximum value of BTE of 27.8% was attained for B10C90 (10% transesterified waste cooking oil and 90% cedarwood oil in volume), whereas it was 28.1% for diesel at maximum load conditions. The BSEC was 15.4 MJ/kW-hr for B10C90 and 12.8 MJ/kWhr for diesel. The emission characteristics, CO, HC, NOx, CO2, and smoke for B10C90 were 17.93 g/kWhr, 0.55 g/kWhr., 20.09 g/kWhr, 2210.9 g/kWhr, and 25.55%. Combustion features such as NHRR, burn duration, MPRR, combustion efficiency, Ignition delay, and coefficient of variance for B10C90 were 53.74 bar, 29.38 CAD, 4.71 bar/CAD, 99.7%, 7.01 CAD, and 4.73% respectively. It showed that B10C90 had comparable performance (BTE) and combustion values to mineral diesel with better emission characteristics.
Read full abstract