Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency of IoT-based air quality monitoring systems. A comprehensive analysis of sensor types, data transmission protocols, and system architectures was conducted, focusing on their energy consumption. An energy-efficient system was designed using the Smart Air sensor, Zigbee gateway, and Mini UPS, with its performance evaluated through daily energy consumption, backup operation time, and annual energy use. An integrated efficiency index (IEI) was introduced to compare sensor models based on functionality, energy efficiency, and cost. The proposed system achieves a daily energy consumption of 72 W·h, supports up to 10 h of autonomous operation during outages, and consumes 26.28 kW·h annually. The IEI analysis identified the Ajax LifeQuality as the most energy-efficient sensor, while Smart Air offers a cost-effective alternative with broader functionality. The proposed architecture and IEI provide a scalable and sustainable framework for IoT air quality monitoring, with potential applications in smart cities and residential settings. Future research should explore renewable energy integration and predictive energy management.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
45750 Articles
Published in last 50 years
Articles published on Energy Use
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
43096 Search results
Sort by Recency