Solar energy is an important source of clean energy to combat climate change issues that motivate the establishment of solar farms. Establishing solar farms has been considered a proper alternative for energy production in countries like Mozambique, which need reliable and clean sources of energy for sustainable development. However, selecting proper sites for creating solar farms is a function of various economic, environmental, and technical criteria, which are usually conflicting with each other. This makes solar farm site selection a complex spatial problem that requires adapting proper techniques to solve it. In this study, we proposed a multi-objective optimization (MOO) approach for site selection of solar farms in Mozambique, by optimizing six objective functions using an improved NSGA-II (Non-dominated Sorting Genetic Algorithm II) algorithm. The MOO model is demonstrated by implementing a case study in KaMavota district, Maputo city, Mozambique. The improved NSGA-II algorithm displays a better performance in comparison to standard NSGA-II. The study also demonstrated how decision-makers can select optimum solutions, based on their preferences, despite trade-offs existing between all objective functions, which support the decision-making.
Read full abstract