This study presents a theoretical investigation into the photovoltaic efficiency of InGaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influence of electric and magnetic fields. The finite element method is employed to numerically solve the one-dimensional Schrödinger equation within the framework of the effective-mass approximation. Our findings reveal that electric and magnetic fields significantly influence the energy levels of electrons and holes, optical transition energies, open-circuit voltages, short-circuit currents, and overall photovoltaic conversion performances of IBSCs. Furthermore, this research indicates that applying a magnetic field positively influences conversion efficiency. Through the optimization of IBSC parameters, an efficiency of approximately 50% is achievable, surpassing the conventional Shockley–Queisser limit. This theoretical study demonstrates the potential for next-generation photovoltaic technology advancements.