Offshore floating wind turbines will play a pivotal role in achieving net-zero emissions. This study explores a hybrid platform combining an offshore floating wind turbine with wave energy converters (WECs) from an active control perspective to mitigate turbine damage risk while maximizing wave energy conversion. Initially, the control-oriented state-space modelling of the hybrid platform and the validation of the time-domain Cummins-type models of different orders are performed by the Eulerian-Lagrangian method with model linearization and downscaling. Then, a multi-objective non-causal optimal controller is introduced, balancing wave energy capture and penalizing the nacelle acceleration. When wave energy capture maximization is set as the control target, the proposed optimal controller can improve energy output by 184% as compared against a well-tuned passive damper across all peak periods tested. However this causes peak hub acceleration to increase marginally beyond the desirable limits of 3–4 m/s2 for wind turbine operation. When hub acceleration is penalized, the multi-objective optimal controller can reduce peak values below limits by between 40% and 61% with trivial loss of wave energy capture.
Read full abstract