BackgroundEnergy canes are viable feedstocks for biomass industries due to their high biomass production potential, lower susceptibility to insects and diseases, better ability to adapt to extreme conditions and clean bioenergy. Interspecific hybrids (ISH) and intergeneric hybrids (IGH) have great potential to meet the growing demand of biomass, biomass-derived energy and feedstock.ResultsIn this study, two types of energy canes, Type I and Type II, derived from S. spontaneum and E. arundinaceous background were evaluated for high biomass, fiber and bioenergy potential under subtropical climate along with the check varieties Co 0238 and CoS 767. Out of 18 energy canes studied, six energy canes, viz., SBIEC11008 (204.15 t/ha), SBIEC11005 (192.93 t/ha), SBIEC13008 (201.26 t/ha), SBIEC13009 (196.58 t/ha), SBIEC13002 (170.15 t/ha), and SBIEC13007 (173.76 t/ha), consistently outperformed the check varieties under Type-I, whereas in type-II, SBIEC11004 (225.78 t/ha), SBIEC11006 (184.89 t/ha), and SBIEC14006 (184.73 t/ha) energy canes produced significantly higher biomass than commercial checks, indicating their superior potential for cogeneration. Estimated energy output from the energy canes (700–1300 GJ/ha/year) exceeded the range of co-varieties (400–500 GJ/ha/year) and energy utilization efficiency in plants and ratoon crops for energy canes viz., SBIEC11008 (3%, 1.97%), SBIEC14006 (1.93%, 2.4%), SBIEC11005 (1.7%, 1.9%), and SBIEC11001 (1.01%, 1.03%), was higher than best checks Co 0238 (0.77, 0.9%). Additionally, energy canes SBIEC 13001 (22.35%), SBIEC 11008 (22.50%), SBIEC 14006 (28.54%), SBIEC 11004 (30.17%) and SBIEC 11001 (27.03%) had higher fiber contents than the co-varieties (12.45%).ConclusionThe study gives insight about the potential energy canes for higher biomass and energy value. These energy cane presents a vital option to meet the future demand of bioenergy, fiber and fodder for biomass due to their versatile capacity to grow easily under marginal lands without competing with cultivated land worldwide.
Read full abstract