We have previously reported that porcine retinal veins can be contracted by vasoactive factors such as endothelin-1, but it is still unknown which cells play the major role in such contraction responses. This study seeks to confirm whether retinal vein endothelial cells play a significant role in the endothelin-1 induced contraction of porcine retinal veins. This is a novel study which provides confirmation of the endothelial cells’ ability to contract retinal veins using a live vessel preparation.Retinal veins were isolated from porcine retina and cannulated for perfusion. The vessels were exposed to extraluminal delivery of endothelin-1 (10−8 M) and change in vessel diameter recorded automatically every 2 s. A phase contrast objective lens was also used to capture images of the endothelial cell morphometries. The length, width, area, and perimeter were assessed. In addition, vein histology and immuno-labeling for contractile proteins was performed.With 10−8 M endothelin-1 contractions to 63.6% of baseline were seen. The polygonal shape of the endothelial cells under normal tone became spindle-like after contraction. The area, width, perimeter and length were significantly reduced by 54.8%, 48.1%, 28.5% and 10.5% respectively. Three contractile proteins, myosin, calponin and alpha-SMA were found in retinal vein endothelial cells.Retinal vein endothelial cells contain contractile proteins and can be contracted by endothelin-1 administration. Such contractile capability may be important in regulating retinal perfusion but could also be a factor in the pathogenesis of retinal vascular diseases such as retinal vein occlusion. As far as we are aware, this is the first study on living isolated veins to confirm that endothelial cells contribute to the endothelin-1 induced contraction.
Read full abstract