A comprehensive understanding of the cardio-spleen-bone marrow immune cell axis is essential for elucidating the alterations occurring during the pathogenesis of diabetes mellitus (DM). This study investigates the dynamics of immune cell kinetics in DM after myocardial infarction (MI) over time. MI was induced in diabetic and healthy control groups using C57BL/N6 mice, with sacrifices occurring at days 1, 3, 7, and 28 post-MI to collect heart, peripheral blood (PB), spleen, and bone marrow (BM) samples. Cell suspensions from each organ were isolated and analyzed via flow cytometry. Additionally, the endothelial progenitor cell-colony-forming assay (EPC-CFA) was performed using mononuclear cells derived from BM, PB, and the spleen. The results indicated that, despite normal production in BM and the spleen, CD45+ cells were lower in the PB of DM mice at days 1 to 3. Further analysis revealed a reduction in total and pro-inflammatory neutrophils (N1s) in PB at days 1 to 3 and in the spleen at days 3 to 7 in DM mice, suggesting that DM-induced alterations in splenic neutrophils fail to meet the demand in PB and ischemic tissues. Infiltrating macrophages (total, M1, M2) were reduced at day 3 in the DM-ischemic heart, with total and M1 (days 1-3) and M2 (days 3-7) macrophages being significantly decreased in DM-PB compared to controls, indicating impaired macrophage recruitment and polarization in DM. Myeloid dendritic cells (mDCs) in the heart were higher from days 1 to 7, which corresponded with the enhanced recruitment of CD8+ cells from days 1 to 28 in the DM-infarcted myocardium. Total CD4+ cells decreased in DM-PB at days 1 to 3, suggesting a delayed adaptive immune response to MI. B cells were reduced in PB at days 1 to 3, in myocardium at day 3, and in the spleen at day 7, indicating compromised mobilization from BM. EPC-CFA results showed a marked decrease in definitive EPC colonies in the spleen and BM from days 1 to 28 in DM mice compared to controls in vitro, highlighting that DM severely impairs EPC colony-forming activity by limiting the differentiation of EPCs from primitive to definitive forms. Taking together, this study underscores significant disruptions in the cardio-spleen-bone marrow immune cell axis following MI in DM, revealing delayed innate and adaptive immune responses along with impaired EPC differentiation.
Read full abstract