Cryopreserved allogeneic blood vessels have received considerable attention for vascular reconstruction owing to their easy availability and excellent anti-infective property. However, current cryopreservation methods cause significant endothelium loss alongside directly exposing smooth muscle cells and extracellular matrix components to the circulating blood, which can induce thrombosis and/or restenosis. We covalently coupled PEGylated phospholipids (DMPE-PEG) with anti-coagulant bivalirudin (abbreviated as DPB) and endothelial progenitor cell (EPC)-capturing TPSLEQRTVYAK (TPS) (abbreviated as DPT), respectively. Both DPT and DPB were co-modified onto the lumen surface of cryopreserved allogeneic vessels through hydrophobic interaction between DMPE-PEG and the phospholipid bilayer of surviving cells. Cy7-labled DMPE-PEG was used to investigate the saturation concentration and incubation time on the lumen surface of cryopreserved vessels. DPB and DPT co-modified cryopreserved vessels were characterized through different assays, including tissue viability and gene expression, hemocompatibility, and EPC capture in vitro and an artery implantation model in vivo. Co-modification of DPB and DPT attained luminal saturation as earlier as 10 min while preserving the viability of the residual cells on the cryopreserved vessels. The optimally co-modified cryopreserved allogeneic vessels showed that the DPB can improve the hemocompatibility by reducing fibrinogen adsorption and platelets adhesion alongside protecting the EPCs-capturing function of the DPT via inhibiting the masking by blood components, which altogether promoted the patency and endothelialization. This work provided a quick, biocompatible and an effective approach to functionalize tissue-engineered constructs containing alive cells.