Objective/BackgroundProtein S (PS; encoded by the PROS1 gene), a key vitamin K-dependent anticoagulant protein, is emerging as a key structural and functional protein that is overexpressd in various malignancies, but how PS signals to promote lung cancer progression is unclear. MethodsWe used immortalized, nontumorigenic human lung epithelial cell line NL-20, A549 cells as experimental cellular models for lung cancer, and human microvascular endothelial cells (HMEC-1) as a model system for angiogenesis. A loss- and gain-of-function approach was then used to analyze the role of tumor-derived PS and their natural TAM receptors Tyro3 and MerTK in regulating cell proliferation, migration, anchorage-independent growth, and capillary-like tube formation, all prominent attributes of the metastatic phenotype of tumor cells. ResultsEvidence is now provided that regulation of PROS1 gene expression using either stable cell lines expressing lentiviral-short hairpin RNA (shRNAs) or a replication-incompetent adenovirus alters the phosphorylation of several major signaling pathways, including Erk, PKB/Akt, p38, and focal adhesion kinase (FAK), and modulates PS-dependent Tyro3- and MerTK-mediated cell migration, proliferation, and anchorage-independent growth of lung cancer cells, and endothelial cell capillary-like tube formation. ConclusionThese finding suggest that the PS-Tyro3 and -MerTK axis mediates important signaling pathways to promote lung cancer progression. Genetic inhibition of endogenous PS may serve as a promising target for anticancer drug development.
Read full abstract