Perennial ryegrass (Lolium perenne L.) is a commonly grown pasture species in temperate agriculture, mainly serving as a primary energy source for dairy cows. However, its limited persistence often leads to missed production potential and early resowing, especially in countries that experience summer drought, e.g., Australia and New Zealand. Therefore, understanding the factors influencing perennial ryegrass pasture persistence is crucial for sustainable land management and climate resilience in pasture-based animal production systems. Significant gaps in knowledge exist regarding the factors influencing pasture persistence, as the number of conducted studies in this area remains limited. This study aimed to investigate the factors influencing the expression of persistence in perennial ryegrass populations using airborne and ground-based sensors. A field experiment was conducted in the southwest region of Victoria, Australia, involving ten commercial perennial ryegrass cultivar–endophyte combinations in two different populations. Persistence was evaluated using sensor-based and conventional pasture measurements over two consecutive autumns. The results revealed significant fixed effects of cultivar, endophyte, and environment and their interactions on persistence traits of perennial ryegrass. Cultivars Alto, Samson, and One50 exhibited high levels of persistence when infected with novel endophyte strains. Furthermore, prolonged environmental stresses were found to drive directional selection within pasture populations. The findings emphasise the importance of selecting appropriate cultivar–endophyte combinations and early detection of signs of poor persistence to optimise sward longevity and financial returns from pasture-based animal production systems. This study fills a knowledge gap regarding the factors influencing pasture persistence and provides valuable insights for sustainable pasture management strategies.