There is a unique type of endohedral clusterfullerene containing a hydrogen atom inside the carbon cage (hydrogen-containing clusterfullerenes, HCFs). Unfortunately, the precise positions of the H atoms cannot be determined by powerful single-crystal X-ray diffraction, and thus, the reported internal cluster structures of HCFs are ambiguous. In this study, HCFs were investigated using density functional theory calculations. Various internal cluster structures were obtained for Sc4CNH@Ih(7)-C80 and then carefully inspected to summarize all the favorable H locations in the HCFs. Encouragingly, following these structural characteristics, a new Sc4C2H@Ih(7)-C80 isomer with a μ3-H coordination to three Sc atoms was found to be 12.6 kcal mol-1 more stable than a previously reported isomer. It also holds a much larger SOMO-LUMO gap energy (3.57 vs. 2.36 eV). Its increased stability was further understood by the formation of multicenter bonds (three-center one-electron, three-center two-electron, and even four-center two-electron bonds) and electron density topology analyses. The changed H position may lead to rather different electronic structures, bonding states, and relative stability, indicating its critical role in HCFs. The simulated infrared and Raman spectra based on the new structure also agree fairly well with the experimental observations. Our work not only successfully locates the unpredictable H atom inside HCFs but also demonstrates a practical strategy to quickly determine the internal cluster configurations for more complex clusterfullerenes.
Read full abstract