The transmission of tau pathology has been proposed as one of the major mechanisms for the spatiotemporal spreading of tau pathology in neurodegenerative diseases. Over the last decade, studies have demonstrated that targeting total or pathological tau using tau antibodies can mitigate the development of tau pathology in tauopathy or Alzheimer's disease (AD) mouse models, and multiple tau immunotherapy agents have progressed to clinical trials. Tau antibodies are believed to inhibit the internalization of pathologic seeds and/or block seed elongation after seed internalization. To further address the mechanism of tau antibody inhibition of pathological spread, we conducted immunotherapy studies in mouse primary neurons and wild-type mice (females) seeded with AD patient-derived tau to induce the formation and spreading of tau pathology. Notably, we evaluated the effect of a mouse tau-specific antibody (mTau8) which does not interact with AD-tau seeds in these models. Our results show that mTau8 crosses the blood-brain barrier at levels similar to other antibodies and effectively decreases AD-tau-seeded tau pathology in vitro and in vivo. Importantly, our data suggest that mTau8 binds to endogenous intraneuronal mouse tau, thereby inhibiting the elongation of internalized tau seeds. These findings provide valuable insights into the possible mechanism underlying antibody-based therapies for treating tauopathies.Significance Statement The transmission of tau pathology plays key role in the pathoclinical progression of tauopathy. Studies have shown that tau antibody treatment can mitigate tau pathology in transgenic and spreading models of tauopathy. To explore the mechanisms involved in this procedure, we conducted immunotherapy studies on human tau seeds induced tau spreading models using a mouse tau-specific antibody (mTau8), which does not interact with human-tau seeds. Our findings in the study enhance our understanding of antibody-based therapies for tauopathies.