(Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous‐time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete representation of reality, and may lead to misinterpretation of estimation results. The most compelling reason for a CT approach is that, in contrast to DT modeling, it allows adequate modeling of dynamic adjustment processes. This article introduces spatial dependence in a CT modeling framework. We propose a nonlinear structural equation model (SEM) with latent variables for estimation of the exact discrete model (EDM), which links CT model parameters to DT observations. The use of a SEM with latent variables enables a specification that accounts for measurement errors in the variables, leading to a reduction of attenuation bias (i.e., disattenuation). The SEM‐CT model with spatial dependence developed here is the first dynamic SEM with spatial dependence. A simple regional labor market model for Germany, comprising changes in unemployment and population as endogenous state variables, and changes in regional average wages and in the structure of the manufacturing sector as exogenous input variables, illustrates this spatial econometric SEM‐CT framework.El modelamiento de datos panel espaciales se realiza habitualmente utilizando una conceptualización del tiempo discreto (TD). Sin embargo, existen argumentos de peso para conceptualizar el tiempo de manera continua (TC). En concreto, la mayoría de procesos sociales se desarrolla en TC, por lo que el análisis estadístico en DT trae como consecuencia una simplificación excesiva de los procesos, da una representación incompleta de la realidad, y puede conducir a una interpretación errónea de los resultados de la estimación. La razón más convincente para el uso de un enfoque CT es que a diferencia de modelos DT, una conceptualización CT permite el modelado adecuado de los procesos de ajuste dinámico (dynamic adjustment). Este artículo incorpora la dependencia espacial en un marco de modelamiento con CT. Los autores proponen un modelo de ecuaciones estructurales no lineal (nonlinear structural equation model ‐SEM) con variables latentes para la estimación del modelo discreto exacto (exact discrete model‐EDM), que vincula los parámetros del modelo CT a las observaciones de DT. El uso de un SEM con variables latentes permite una especificación que da cuenta de los errores de medición en las variables, dando lugar a una reducción del sesgo de atenuación (es decir, “desatenuacion”). El modelo SEM‐CT con dependencia espacial desarrollado en el presente estudio es el primer SEM dinámico con dependencia espacial.Para ilustrar el marco conceptual SEM‐CT los autores presentan un modelo simple del mercado laboral regional de Alemania. El modelo está compuesto por los cambios en el desempleo y la población como variables endógenas de estado, y los cambios en los salarios regionales promedio y en la estructura del sector manufacturero como variables de entrada exógenas.(空间)面板数据通常基于离散时间(DT)进行建模。然而更令人信服的观点是基于连续时间(CT)进行(空间)面板数据建模。特别是多数社会过程均在连续时间中演化,基于离散时间的统计分析可能过度简化,使得对现实状况的表达不完备,并可能导致对估计结果的错误解释。相比于离散时间(DT)建模,连续时间(CT)建模最具说服力的原因在于在建模过程中允许足够多的动态调整。本文介绍了CT模型框架中的空间依赖性。把CT模型参数链接到DT观察值中,我们提出了用于估计精确离散模型(EDM)的包含潜变量的非线性结构方程模型(SEM)。包含潜在变量的SEM提供了变量测量误差的计算方案,使得衰减偏差(如反衰减性)减小。本文了提出的空间相关SEM‐CT模型是第一个动态空间相关的SEM模型,并以德国一个简单的区域劳动力市场模型为例,以失业和人口构成变化为内生状态变量,以区域平均工资和制造业结构部门变化为外生输入变量,阐述了该空间计量SEM‐ CT模型的框架。
Read full abstract