Hearing instability in Slc26a4-insufficiency mice may be due to differential expression of genes related to ion homeostasis and activated macrophages. Hearing instability (HI) disorders, defined by either hearing fluctuation or sudden loss, remain incompletely understood. Recent studies have described a Slc26a4 (pendrin)-insufficiency mouse model (DE17.5) that offers a genetically driven model for HI, although deep audiometric and immunohistologic phenotyping of this model remains poorly characterized. Homozygous DE17.5 mice with (F) and without (NF) HI were delineated by serial auditory brainstem responses (ABR) between postnatal days 30 and 60 and compared with adult phenotypically wild-type Slc26a4-heterozygous controls without evidence of HI (Het). HI was defined as a change in threshold of at least 15 dB in at least two frequencies or at least 20 dB in at least one frequency from the previous week. Stria vascularis (SV) cell type-specific gene expression, endolymphatic hydrops (EH), endocochlear potential (EP), and macrophage activation were analyzed and compared between the cohorts. F mice demonstrated significant reductions in the expression of cell type-specific genes related to ion homeostasis and increased macrophage activation within the SV compared with NF and Het cohorts. Both F and NF DE17.5 homozygous mice demonstrated reductions in EP and increased EH compared with the Het cohort. Deep phenotyping of DE17.5 mice demonstrates changes in EP and EH compared with control; however, the HI phenotype was associated with differential ion homeostasis gene expression and increased macrophage activation in the SV. This provides potential further insights into the underlying pathogenesis and possible immunologic contributions of HI in humans.
Read full abstract