Cadmium-109 whole-body and internal biokinetics were experimentally investigated in critically endangered diamond sturgeon Acipenser gueldenstaedtii after uptake from water or food, in fresh (FW) and brackish (BW; 9‰) salinities typical of the Caspian Sea. Whole-body rates of uptake of 109Cd from water and subsequent depuration were quantified over 14 and 28days, respectively. Uptake was greater in FW than BW by a factor of 2.4, but depuration rates were similar in both salinities. In contrast, for the dietary (chironomid) exposure pathway 109Cd assimilation efficiencies (AEs) were higher in BW (13%) compared to FW (9.5%). Head (including gills) or digestive tract were major repositories of 109Cd following aqueous and dietary exposures, respectively, including both uptake and depuration phases. The point-of-entry of 109Cd into the body was also a major and persistent determiner of its subsequent internal distribution. For aqueous exposures, the internal distributions of 109Cd changed appreciably during depuration with increased activity concentrations in some body components, which again varied with salinity. Increased salinity appreciably enhanced the percentage distributions and activity concentrations of 109Cd in the liver, kidney and digestive tract, which are typically most pathologically altered by elevated Cd exposure. For dietary exposure, increased salinity also enhanced 109Cd activity concentrations in most body components. The results repeatedly indicate the important role of salinity in the whole-body and internal biokinetics of 109Cd in A. gueldenstaedtii, a representative of both a phylogenetically distinct and most endangered family of fishes.