End groups of poly(Lactide-co-glycolide) (PLGA) play an important role in determining the properties of polymers for use in drug delivery systems. For instance, it has been reported that the encapsulation efficiency in PLGA microspheres varies significantly between ester-terminated and acid-terminated PLGA. More importantly, the in-vivo degradation time of such polymer excipients is influenced by the functional end-group of the copolymer used.The end group distribution in PLGA polymers has been studied using electrospray and matrix-assisted laser-desorption/ionization – high-resolution mass spectrometry. In both cases, the application of these methods is typically limited to PLGA having a molecular weight of up to 4 kDa. 13Carbon-nuclear-magnetic-resonance has also been reported as a method to differentiate and quantify PLGA end groups with a molecular weight up to 136 kDa. However, reported NMR methods take over 12 h per sample, limiting throughput.Cryoprobe NMR can reduce the time required for the process, however such NMR equipment is costly, which makes it unsuitable for the quality control of PLGA.Here, we present a normal-phase liquid chromatography method capable of resolving functionality type distribution (FTD) and, partially, chemical composition distribution (CCD) in commercial PLGA polymers obtained from ring opening polymerization. This method can separate PLGA polymers with a molecular weight of up to 183.0 kDa while also enabling the simultaneous separation of the difference of Lactic acid (LA)/Glycolic acid (GA) ratios.To achieve this, a cross-linked diol column was used with a ternary gradient from HEX to 0.1 % v/v TEA in EA to 0.1 % v/v FA in THF to allow first for the elution of mono-ester terminated PLGA, followed by the di-acid terminated. In addition, a separation of ester-terminated PLGA in the difference of the LA/GA ratio was achieved.This method is expected to aid in understanding the correlation between PLGA's FTD, CCD, and physical properties, facilitating product development and quality control.