Polyglycolide–caprolactone (PGCL)-based copolymer was synthesized from glycolide and caprolactone by ring opening polymerization in the presence of stannous octoate catalyst and diethylene glycol initiator. The effects of prepolymerization time, monomer ratio, monomer-to-catalyst and monomer-to-initiator ratios on per cent weight conversion were optimized. The end-capped copolymer was synthesized to make absorbable sutures having controlled bioabsorbability at different pH levels. It was observed that endcapped absorbable copolymer was more stable at pH 10.0 compared to uncapped absorbable material. End-capped copolymer also retained higher tensile strength compared to uncapped copolymer after 21 days. This phenomenon of controlled hydrolytic degradation of PGCL-based bioabsorbable polymer having terminal group end-capping can be attributed to less availability of hydrophilic end groups facilitating hydrolytic degradation of polymers.
Read full abstract