A catalyst-in-bag system facilitates the recovery and recycling of chiral dirhodium carboxylate catalysts used for enantioselective, intermolecular cyclopropanation. The catalyst-in-bag system incorporates a soluble enantioselective dirhodium complex catalyst within a reusable, commercial dialysis membrane. Dirhodium catalysts of different sizes are examined, and two catalysts with molecular weights above 2400 Da are well-retained by the membrane. The catalyst Rh2(S-TPPTTL)4 [TPPTTL = (1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate] is explored in enantioselective cyclopropanation reactions under a variety of conditions. The Rh2(S-TPPTTL)4 catalyst, when contained in the catalyst-in-bag system, provides high yields and enantioselectivities, akin to the homogeneous catalyst in solution, with negligible rhodium permeation out of the bag over five catalytic cycles. The catalyst-in-bag approach facilitates recovery of the expensive rhodium metal and ligand, with only ppm level Rh detected in the reaction products. The flexible and expandable catalyst-in-bag system can be accommodated in vessels of different shapes and dimensions.
Read full abstract