Two new aluminium hydrido complexes were synthesized by reacting AlH3 with the enaminone ligand N-(4,4,4-trifluorobut-1-en-3-on)-6,6,6-trifluoroethylamine (HTFB-TFEA) in different molar ratios to obtain mono- and di-hydrido-aluminium enaminonates. Both air and moisture sensitive compounds could be purified via sublimation under reduced pressure. The spectroscopic analysis and structural motif of the monohydrido compound [H-Al(TFB-TBA)2] (3) showed a monomeric 5-coordinated Al(III) centre bearing two chelating enaminone units and a terminal hydride ligand. However, the dihydrido compound exhibited a rapid C-H bond activation and C-C bond formation in the resulting compound [(Al-TFB-TBA)-HCH2] (4a), which was confirmed by single crystal structural data. The intramolecular hydride shift involving the migration of a hydride ligand from aluminium centre to the alkenyl carbon of the enaminone ligand was probed and verified by multi-nuclear spectral studies (1H,1H NOESY, 13C, 19F, and 27Al NMR).