In this paper, we analyze the capacity and delay performance of a large-scale Unmanned Aerial Vehicle (UAV)-enabled wireless network, in which untethered and tethered UAVs deployed with content files move along with mobile Ground Users (GUs) to satisfy their coverage and content delivery requests. We consider the case where the untethered UAVs are of limited storage, while the tethered UAVs serve as the cloud when the GUs cannot obtain the required files from the untethered UAVs. We adopt the Ornstein-Uhlenbeck (OU) process to capture the mobility pattern of the UAVs moving along the GUs and derive the compact expressions of the coverage probability and capacity of our considered network. Using tools from martingale theory, we model the traffic at UAVs as a two-tier queueing system. Based on this modeling, we further derive the analytical expressions of the network backlog and delay bounds. Through numerical results, we verify the correctness of our analysis and demonstrate how the capacity and delay performance can be significantly improved by optimizing the percentage of the untethered UAVs with cached contents.