Recognition of sex pheromones released by heterosexual moths via sex pheromone receptors is key for establishing mating connections in moths. The day-flying moth Phauda flammans is an oligophagous pest in southern cities of China and Southeast Asian countries. Our previous study reported that male P. flammans can be attracted to two sex pheromone compounds [Z-9-hexadecenal and (Z, Z, Z)-9,12,15-octadecadienal] released by females in the field; however, the mechanism of olfactory recognition is not clear. In this study, two sex pheromone receptor genes (PflaOR29 and PflaOR44) were cloned. Among the different tissues, both PflaOR29 and PflaOR44 were highly expressed in the antennae of mated male adults. At different developmental stages, the expression levels of PflaOR29 and PflaOR44 were significantly greater in mated male adults than other stages. The fluorescence signals of PflaOR29 and PflaOR44 were mostly distributed on the dorsal side of the antennae, with a large number of trichoid sensilla. The results of the gene function of PflaOR29 and PflaOR44 based on a Drosophila empty neuron heterologous expression system indicated that PflaOR29 strongly responded to (Z, Z, Z)-9,12,15-octadecadienal but not to Z-9-hexadecenal, whereas PflaOR44 did not respond to the two sex pheromones. Our findings clarify the sex pheromone receptor gene corresponding to (Z, Z, Z)-9,12,15-octadecatrienal. These results provide essential information for analyzing the mechanism of sexual communication in diurnal moths and for identifying target genes for the development of efficient attractants.
Read full abstract