Chondral defect repair is challenging due to a scarcity of reparative cells and the need to fill a large surface area, compounded by the absence of self-healing mechanisms. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CPs) have emerged as a promising alternative with enhanced chondrogenic ability and reduced hypertrophy. De-cellularized bio-scaffolds are reported to act as extracellular matrix, mimicking the structural and functional characteristics of native tissue, thereby facilitating cell attachment and differentiation. This study primarily assessed the synergistic effect of FAA-CPs suspended in fetal cartilage-derived collagen-containing scaffolds in repairing chondral defects. The de-cellularized and lyophilized fetal collagen was prepared from the tibio-femoral joint of a 36 + 4-week gestational age fetus. FAA-CPs were isolated from osteoarthritic cartilage samples (n = 3) and characterized. In ex vivo analysis, FAA-CPs at a density of 1 × 106 cells were suspended in the lyophilized scaffold and placed into the chondral defects created in the Osteochondral Units and harvested on the 35th day for histological examination. The lyophilized scaffold of de-cellularized fetal cartilage with FAA-CPs demonstrated effective healing of the critical size chondral defect. This was evidenced by a uniform distribution of cells, a well-organized collagen-fibrillar network, complete filling of the defect with alignment to the surface, and favorable integration with the adjacent cartilage. However, these effects were less pronounced in the plain scaffold control group and no demonstrable repair observed in the empty defect group. This study suggests the synergistic potential of FAA-CPs and collagen scaffold for chondral repair which needs to be further explored for clinical therapy. The online version contains supplementary material available at 10.1007/s43465-024-01192-6.
Read full abstract