We simulated the impact of hypothetical waning scenarios of a 1-dose human papillomavirus (HPV) vaccination paired with switching to 2-dose mitigation strategies guided by empirical vaccine trial reporting timelines. Using 2 independent mathematical models fitted to a high-burden setting, we projected the cumulative cervical cancer cases averted over 85 years for alternative HPV vaccination scenarios under 2 program adoption timelines: 1) de novo introduction of a 1-dose HPV vaccination and 2) a switch from an existing 2-dose HPV vaccination program to a 1-dose vaccination. We assumed 80% vaccination coverage with the bivalent vaccine and an average duration of a 1-dose HPV vaccine protection of either 30 or 25 years with 100% efficacy. We varied the eligible age group(s) at program introduction and the 2-dose mitigation (single-age cohort or multi-age cohort). If needed for mitigation, reintroduction of 2-dose vaccination was assumed to occur in 2036 (ie, 30 years after initiation of the Costa Rica Vaccine Trial). Under both vaccine adoption timelines, the models projected that countries could achieve the same level of health benefits by switching to 2 doses in 2036 using a multi-age cohort approach as with initiating a 2-dose or 1-dose vaccination program with no waning. With only a single-age cohort 2-dose mitigation approach, 98%-99% of cases would be prevented compared with the health benefits of 2 doses or a noninferior, durable 1 dose. Countries hesitant to adopt a 1-dose HPV vaccination program may have opportunities to leverage the benefits and efficiency of a 1-dose schedule while awaiting longer-term reporting from 1-dose durability studies, including Costa Rica Vaccine Trial.
Read full abstract