An environment-aware millimeter wave radar (EMWR) is one of the most important sensors in an autonomous driving system. With the increasing penetration of an EMWR on an autonomous vehicle, the possibility of radar interference increases accordingly. Interference may seriously affect the detection performance of an EMWR. When the transmitted signals from other EMWRs are received by the EMWR on an autonomous vehicle, the accuracy of target detection will be affected, which may affect the environment-aware performance. Therefore, more and more attention is paid to how to restrain the interference between EMWR signals. Radar interference can be divided into two types: same-frequency interference (SFI) and different-frequency interference (DFI). In this paper, an anti-DFI algorithm of an EMWR is proposed. Firstly, the causes and signal characteristics of DFI are analyzed. Secondly, the signal amplitude is obtained via Hilbert transform to locate the interference according to the signal characteristics. Then, the Lagrange interpolation based on empirical-mode decomposition (EMD) is used to reconstruct the interference signal to reduce the influence of DFI. Finally, the feasibility of the proposed algorithm is verified by the simulation results. The simulation results validate that the interference signal after EMD filtering and Lagrange interpolation can repair the interference region and achieve the purpose of anti-DFI.
Read full abstract