In a bimanual task, proprioception provides information about position and movement of upper arms. Developmental studies showed improvement of proprioceptive accuracy and timing adjustments of muscular events from childhood to adulthood in bimanual tasks. However, the cortical maturational changes related to bimanual coordination is not fully understood. The aim of this study was to investigate cortical correlates underlying motor planning and upper limb stabilization performance at left (C3) and right (C4) sensorimotor cortices using event-related potential (ERP) analyses. We recruited 46 participants divided into four groups (12 children: 8–10 years, 13 early adolescents: 11–13 years, 11 late adolescents: 14–16 years and 10 young adults: 20–35 years). Participants performed a bimanual load-lifting task, where the left postural arm supported the load and the right motor arm lifted the load. Maximal amplitude of elbow rotation (MA%) of the postural arm, reaction time (RT) and EMG activity of biceps brachii bilaterally were computed. Laplacian-transformed ERPs of the electroencephalographic (EEG) signal response-locked to motor arm biceps EMG activity onset were analyzed over C3 and C4. We found a developmental effect for behavioral and EEG data denoted by significant decrease of MA% and RT with age, earlier inhibition of the biceps brachii of the postural arm in adults and earlier EEG activation/inhibition onset at C3/C4. Amplitude of the negative wave at C4 was higher in children and early adolescents compared to the other groups. In conclusion, we found a maturational process in cortical correlates related to motor planning and upper limb stabilization performance with interhemispheric lateralization appearing during adolescence. Findings may serve documenting bimanual performance in children with neurodevelopmental disorders.