Abstract Recently, Nakamura and Huang proposed a theory of blocking onset based on the budget of finite-amplitude local wave activity on the midlatitude waveguide. Blocks form in their idealized model due to a mechanism that also describes the emergence of traffic jams in traffic theory. The current work investigates the development of a winter European block in terms of finite-amplitude local wave activity to evaluate the possible relevance of the “traffic jam” mechanism for the flow transition. Two hundred members of a medium-range ensemble forecast of the blocking onset period are analyzed with correlation- and cluster-based sensitivity techniques. Diagnostic evidence points to a traffic jam onset on 17 December 2016. Block development is sensitive to upstream Rossby wave activity up to 1.5 days prior to its initiation and consistent with expectations from the idealized theory. Eastward transport of finite-amplitude local wave activity in the southern part of the block is suppressed by nonlinear flux modification from the large-amplitude blocking pattern, consistent with the expected obstruction in the traffic jam model. The relationship of finite-amplitude local wave activity and its zonal flux as mapped by the ensemble exhibits established characteristics of a traffic jam. This study suggests that the traffic jam mechanism may play an important role in some cases of blocking onset and more generally that applying finite-amplitude local wave activity diagnostics to ensemble data is a promising approach for the further examination of individual onset events in light of the Nakamura and Huang theory. Significance Statement Blocking is an occasional phenomenon in the mid- and high-latitude atmosphere characterized by the stalling of weather systems. Episodes of blocking are linked to extreme weather but their occurrence is not completely understood. A recent theory suggests that blocks may form in the jet stream like traffic jams on a highway. The onset mechanism contained in the theory could explain why forecasts of blocking are sometimes poor. In this work, we investigate the formation of a 2016 European winter block in the context of the traffic jam theory. Though questions remain regarding the implications for forecast uncertainty, our findings strongly support the notion of a traffic jam onset.