Early fault detection in rotating machinery needs careful expert analysis of vibration data for monitoring a component state. Online methods that automatically set a threshold and raise an alarm when the vibration signature is anomalous are meant to efficiently manage key assets in a preventive maintenance plan. In recent years a focus has raised on data driven methods in parallel with the increasing attention towards machine learning and, particularly, deep learning models. In this regard, for rotating equipment components, an important aspect relates to labelled data scarcity for supervised training. On the other hand, the advent of the Internet of Things allows to gather data from multiple assets with relevant information on the asset state itself. Self-supervised learning methods in deep learning application are currently tackling this problem. Investigating Self-learning approaches to integrate domain knowledge and learn relevant features from unlabeled data is therefore important for condition monitoring applications. In this paper a methodology is proposed based on cycle consistency representation learning for training an embedder network on univariate unlabeled data. In order to learn a distance metric in the embedding space the original data are transformed to generate sequences of augmented inputs to enforce learnable pattern similarity in the augmented pairs. A differentiable cycle-consistency loss is chosen to maximize the numbers of augmented pairs in the learned embedding space that have minimum features distance. The pretext task in the described self-supervised setting aims to train a feature extractor for discriminating dissimilar samples in the embedding space by a distance metric and to provide a useful representation for down-stream tasks. The paper analyzes the performance of the approach for anomaly detection in rotating machinery. The methodology is tested on vibration data provided by the Center for Intelligent Maintenance Systems (IMS), University of Cincinnati, considering different accelerated life test campaigns. The data were collected to monitor the fault development in bearings and the model shows how the learned embedding space discriminates effectively anomalous samples from normal ones in the degradation stages of the bearings.
Read full abstract