The traveling wave ultrasonic stator is normally fabricated with teeth. The tooth geometry improves the driving speed, but it creates natural frequency splitting and mode contamination, especially a distorted traveling wave. A dynamic model of a stepped-plate periodic stator is developed to examine the distortion. The stator is treated as an annular supported by a thin mid plate, and the support stiffness is formulated by using equivalent energy principle. The effects of the tooth and mid plate on the natural frequency and vibration mode are examined by using the perturbation method. The rules governing the frequency splitting, frequency perturbation as well as mode contamination are also identified. The traveling wave response and elliptical trace on stator surface are obtained by using the mode superposition method and they are proved to be distorted due to the tooth geometry. The response at the repeated doublets becomes coupled forward and backward traveling waves, but that at the split doublets becomes coupled forward traveling, standing and backward traveling waves. The results indicate that the tooth mass instead of the stiffness decreases the vibration amplitude and driving speed of the dominant wave, but their effects are different at the repeated and split doublets. Inspection of the model implies that the distortion can be suppressed by using a suitable combination of the wavenumber, tooth count, tooth height and occupying fraction. Numerical calculations are carried out to demonstrate the tooth geometry effect on the transient waveform, driving speed and elliptical trace. The optimization of the tooth geometry that can help achieve a purer traveling wave is discussed.