The kinetic dependences of surface tension, dilatational dynamic surface elasticity and ellipsometric angles of solutions of copolymers of styrene and 4-vinylbenzyl chloride modified with N,N-dimethyldodecylamine, as well as the micromophology of adsorption and spread layers of this polyelectrolyte were determined. All kinetic dependences of the dynamic surface elasticity were found to be monotonic, in contrast to the results for previously studied polyelectrolyte solutions without polystyrene fragments. The peculiarities of surface properties of the studied solutions may be related to the formation of microaggregates in the surface layer, preventing the formation of loops and tails of polymer chains at the interfacial boundary, and, consequently, the decrease in surface elasticity after the local maximum. The occurrence of aggregates with sizes of 1–4 nm in the Z-direction in the surface layer is also indicated by atomic force microscopy data. The obtained results confirm the earlier conclusions about the formation of aggregates in the surface layer of polyelectrolyte solutions containing sodium polystyrene sulfonate (PSS) fragments. A two-dimensional phase transition to a denser surface phase at surface pressures of 25–30 mN/m and the formation of aggregates with a size of 40 nm in the Z-direction were found for applied polyelectrolyte layers without styrene monomers on an aqueous substrate.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access