Local corrosion at a defect on a pipeline was assessed using both 2-dimensional (2D) and 3-dimensional (3D) finite element models under mechano-electrochemical (M-E) interaction. While the M-E interaction increases corrosion activity at the defect, the assessment of M-E interaction would have different results using 2D and 3D models. Compared with the 3D model, the 2D model produces a greater local stress, a higher local plastic strain, a more negative corrosion potential and a higher anodic current density at the defect, and thus, a lower threshold internal pressure causing local yielding. The 3D model is more conservative for corrosion rate prediction of corroded pipelines. A new concept, rAZ (the ratio of the anodic zone length to defect length in the 2D model, or the ratio of the anodic zone area to the defect area in the 3D model), is proposed to define growth mode of the corrosion defect. There is a smaller rAZ produced in 2D model. At specific internal pressures, the 2D model predicts an ellipsoidal defect center area experiencing accelerated corrosion and potentially resulting in pipeline leaking.
Read full abstract