Animal models are an important tool for studying noncommunicable diseases (NCDs) as they provide a unique opportunity to investigate real-time changes that occur in the onset of, and during, the diseased state. This is of particular importance given that the global prevalence of NCDs, such as type 2 diabetes mellitus (T2DM), is rising at an alarming rate. In South Africa, which has one of the highest levels of HIV in the world, the incidence of T2DM is thought to be associated, in part, with exposure to combination antiretrovirals. We report on the establishment of both nonobese and obese zebrafish models of T2DM, as well as associated changes in mRNA expression of preproinsulin and phosphoenolpyruvate carboxykinase (pck) 1 and 2. The diabetic state was achieved by either immersing adult zebrafish in a 2% glucose solution for 40 days or by overfeeding adult zebrafish for 10 weeks. Glucose immersion resulted in significantly elevated fasting blood glucose levels twice as high as control, whereas bodyweight did not change significantly (nonobese model). Overfeeding led to both significantly elevated fasting blood glucose and bodyweight compared with control (obese model). Both models were characterized by significantly increased preproinsulin mRNA expression indicating insulin resistance; mRNA expression of metabolic enzymes PCK 1 and 2 was also significantly upregulated, as seen in diabetic patients. These candidate gene expression changes, similar in both zebrafish models, establish a baseline that can be utilized to investigate the underlying mechanisms driving the increased T2DM incidence, using an excellent alternative to traditional rodent models.
Read full abstract