BackgroundSignal transducer and activator of transcription 6 (STAT6) is an intracelluar transcriotion factor and NLRP3 (Nod-like receptor containing a pyrin domain 3) is a component of NLRP3 inflammasome in pyroptotic cells. There was increased activation of STAT6 and expression of NLRP3 in mice with murine acute lung injury (ALI). However, it is unknown their roles in the development of murine ALI. We in this study, investigated the effects of STAT6 signaling on murine ALI and pyroptosis in STAT6 knock-out (KO) mice and macrophages.ResultsSTAT6 was activated in the lung tissues of mice 2 days after intratracheal treatmemt with 5 mg/kg LPS. Lack of STAT6 expression in KO mice induced more severe lung inflammation, associated with elevated neutrophil influx and expression of TNF-alpha, IL-6 and IL-1beta in the inflamed lung tissues. In addition, the expression of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD), p-p38 MAPK (p38 mitogen-activated protein kinase) and ratio of LC3-II/I (microtubule-associated protein-1 light chain-3) was increased, accompanied with the increased polarization of Siglec-F(−) subtype macrophages in KO mice with ALI. Further studies in bone marrow-derived macrophages (BMDMs) revealed that lack of STAT6 increased the expression of NLRP3 and p-p38 MAPK, in association with elevated expression of TNF-alpha, IL-1beta and Calreticulin in LPS-treated KO BMDMs.ConclusionsLack of STAT6 exacerbated murine ALI through improving the expression of NLRP3 and activation of p38 MAPK in macrophages. STAT6 has an immune suppressive role in the development of ALI and would be a promising therapeutic target in the treatment of ALI and possibly among patients with acute respiratory distress syndrome (ARDS).
Read full abstract