Structural failure is a well-established complication of rotator cuff repair procedures. To evaluate the effect of magnetic microbeads, designed for precise drug delivery via magnetic force, on sustained transforming growth factor-beta-1 (TGF-β1) release and rotator cuff healing in a rat rotator cuff repair model. TGF-β1 laden microbeads were prepared, and baseline in vitro experiments included the magnetization of the microbeads and TGF-β1 release tests. In an in vivo experiment using a rat rotator cuff repair model on both shoulders, 72 rats were randomly assigned to three groups (24 per group): group A, conventional repair; group B, repair with and simple TGF-β1 injection; and group C, repair with magnet insertion into the humeral head and TGF-β1 laden microbead injection. Delivery of TGF-β1 was evaluated at 1 and 7 days after the intervention using PCR, Western blot, and immunohistochemistry. At 6 weeks post-intervention, rotator cuff healing was assessed using biomechanical and histological analysis. The in vitro experiments confirmed the magnetization property of the microbeads and sustained delivery of TGF-β1 for up to 10 days. No difference in the TGF-β1 expression was found at day 1 in vivo. However, at day 7, group C exhibited a significantly elevated expression of TGF-β1 in both PCR and Western blot analyses compared to groups A and B (all P < 0.05). Immunohistochemical analysis revealed a higher expression of TGF-β1 at the repair site in group C on day 7. At 6 weeks, biomechanical analysis demonstrated a significantly higher ultimate failure load in group C than in groups A and B (P < 0.05) and greater stiffness than in group A (P = 0.045). In addition, histological analysis showed denser and more regular collagen fibers with complete continuity to the bone in group C than in groups A and B, a statistically significant difference according to the semi-quantitative scoring system (all P < 0.05). The use of the TGF-β1 laden magnetic microbeads demonstrated sustained delivery of TGF-β1 to the repair site, improving rotator cuff healing.
Read full abstract