Twinned zinc cadmium sulfide (ZnxCd1-xS) has been widely investigated for efficient Cr(VI) reduction and H2 production under light irradiation due to its inherent homojunctions. However, long-distance migration of charge carriers and relatively low conduction band level inevitably cause low photocatalytic reduction ability. Herein, we developed a DMF-involved one-step solvothermal strategy to introduce N heteroatoms into Zn0.67Cd0.33S crystals incorporated with dopant-induced S vacancies. The synergetic promotion of the elevated conduction band, coupled with the robust aggregation of interactants, effectively impeded the recombination behavior of charge carriers, leading to a notable increase in photocurrent density (∼2.4 times), electron density (∼2.8 times), and a higher photo-reducing potential. The optimal NZCS-10 demonstrated a superior photocatalytic Cr(VI) reduction efficiency of 99.32 % within 30 min, and rendered ca. 5.8- and 7.6-fold enhancement for H2 evolution rate under alkaline and acidic conditions, respectively. This study provided a universal strategy for gaining highly reductive transition metal sulfides with more active sites.
Read full abstract