Integrating STEM education within the elementary school science curriculum in Ontario, Canada, elevated the expectation for elementary preservice teachers to teach STEM skills such as problem-solving through coding. Research shows that educational robotics can promote STEM knowledge and skills. This mixed methods study investigates the effect of an educational robotics intervention on preservice teachers’ STEM problem-solving skills and their self-efficacy to teach with educational robotics during the COVID-19 pandemic. Data sources included a pre- and postquestionnaire on problem-solving, a pre- and post- self-efficacy teaching questionnaire, a problem-solving worksheet, and transcripts of group interactions. Quantitative findings were statistically significant for preservice teachers’ self-efficacy to teach with educational robotics (large effect size) and for problem-solving competencies (small effect size). Using a STEM problem-solving framework, two preservice teacher group interactions were analysed. Qualitative findings indicated that preservice teachers exhibited similar problem-solving processes as STEM experts, but preservice teachers’ prior STEM knowledge limited the types of decisions considered at the problem-solving stages. The study provides an example of how preservice teachers’ self-efficacy to teach with educational robotics was developed within a science education course and lends unique insights into the problem-solving processes these preservice teacher groups engaged in.