Bacteria usually form biofilms as a defense mechanism against predation by bacterivorous nematodes. In this context, the second messenger c-di-GMP from the wild-type Pseudomonas syringae MB03 actuates the transcriptional factor FleQ03 to elicit biofilm-dependent nematicidal activity against Caenorhabditis elegans N2. P. syringae MB03 cells exhibited nematicidal activity and c-di-GMP content in P. syringae MB03 cells was increased after feeding to nematodes. Expression of a diguanylate cyclase (DGC) gene in P. syringae MB03 resulted in an increased c-di-GMP content, biofilm yield and nematicidal activity, whereas converse effects were obtained when expressing a phosphodiesterase (PDE) gene. Molecular docking and isothermal titration calorimetry assays verified the affinity activity between c-di-GMP and the FleQ03 protein. The disruption of the fleQ03 gene in P. syringae MB03, while increasing c-di-GMP content, significantly diminished both biofilm formation and nematicidal activity. Interestingly, P. syringae MB03 formed a full-body biofilm around the worms against predation, probably extending from the tail to the head, whereas it was not observed in the fleQ03 gene disrupted cells. Thus, we hypothesized that c-di-GMP incorporated FleQ03 to reinforce bacterial biofilm and biofilm-dependent pathogenicity in response to C. elegans predation, providing insights into a possible means of resisting bacterivorous nematodes by bacteria in natural ecosystems.
Read full abstract