Studies on an inertial electrostatic confinement (IEC) device are generally focused on increasing particle production. One way to achieve this is to increase the number of ion sources. In this study, the deuterium-deuterium fusion reaction was carried out in the IEC Saraykoy Nuclear Research and Training Center (SNRTC-IEC) fusion device (previously at the Turkish Atomic Energy Authority, now reestablished as the Turkish Energy, Nuclear and Mineral Research Agency) at cathode voltage of 85 kV and pressure of 5 × 10−4 mbars, and the effect of ion sources and radio-frequency (RF) power on the neutron production rate was investigated. To ensure a high concentration of ions in the center of the cathode, three inductively coupled plasma deuterium ion sources were added to this device. As the number of ion sources increased from one to three, the neutron production rate increased from 2.3 × 104 to 3.6 × 105n/s. Two ion source configurations were used to examine the effect of RF power. It was observed that when the RF power was increased from 40 to 200 W, the neutron production rate increased linearly from 4.6 × 104 to 1.7 × 105 n/s.
Read full abstract