In this study, a series of novel nanofibers based on gelatin (GA) loading with purple potato anthocyanin (PPA) and syringic acid (SA) were obtained by electrospinning technology. The effects of SA on mechanical properties, thermal stability, antioxidant capacity, and antimicrobial activity of the GA/PPA nanofibers were systematically characterized. The scanning electron microscopy observation results revealed a smooth surface on the nanofibers. The incorporation of SA enhanced the viscosity of the electrospun solutions, and it increased the average diameter of nanofibers from 0.17 μm to 0.28 μm. The tensile strength and thermal stability of the obtained nanofibers were enhanced with the addition of a suitable level of SA (1.5%, w/v), which strengthened the intermolecular interaction. The GA/PPA/SA nanofibers presented over 80% antioxidant capacity and strong antibacterial activity against E. coli and S. aureus. Meanwhile, the sensitivity responses of nanofibers to NH3 revealed that GA/PPA/SA II nanofibers (1.5% w/v SA) presented good sensitivity of colorimetric behavior to ammonia. A pork spoilage test was performed to evaluate practical application of the nanofibers, and an obvious color change (dark purple to green) was observed. These results indicated GA/PPA/SA II nanofibers can be utilized as an active and intelligent multipurpose packaging material to preserve and track the freshness of pork.
Read full abstract