Sodium salts of cyclodextrins are commonly used in capillary electrophoresis/mass spectrometry (CE/MS) analysis of illicit drugs and their optical isomers. To avoid the suppression effect of cyclodextrins under electrospray ionization (ESI), the partial filling technique (PFT) is commonly utilized, which has a limited resolution. Low-flow nano-ESI has been shown to reduce the suppression effect of the salts. To test the compatibility of low-flow ESI with a background electrolyte (BGE) containing sodium salts of cyclodextrin, sheathless narrow capillary CE/MS with flow rates of low nanoliters/minute (nL/min) was applied to the separation and detection of cathinones and their positional and optical isomers for the first time. Low-flow sheathless CE/MS using a 20-µm-i.d. capillary in conjunction with a porous tip interface was used for the separation of cathinone derivatives and their optical isomers. Highly sulfated γ-cyclodextrin (HS-γ-CD) in conjunction with (+)-18-crown-6-tetracarboxylic acid ((+)-18-C-6-TCA) was used as the BGE and an ion trap mass spectrometer operating in full scan mode was utilized. Utilizing low flow rate (~10 nL/min) sheathless CE/MS, the use of the sodium salt of HS-γ-CD as the BGE was compared with the same solution using PFT. The relative and absolute sensitivity of detection of cathinones were about the same, indicating that under low-flow sheathless CE/MS there was no significant suppression due to the existence of HS-γ-CD in the electrospray process. However, enhanced resolution of cathinone derivatives and their positional and optical isomers was observed when the solution of HS-γ-CD was used as the BGE. The enhanced resolution was because of the presence of the HS-γ-CD in the entire capillary during the analysis. The addition of 15 mM (+)-18-C-6-TCA to the BGE containing HS-γ-CD further enhanced the resolution resulting in separation of all cathinones and their positional and optical isomers. A novel CE/MS technique has been introduced that combines low-flow sheathless CE/MS, with HS-γ-CD and 15 mM (+)-18-C-6-TCA as the BGE for separation of cathinone derivatives as well as their positional and optical isomers.