This study focused on the bioactive secondary metabolites of an endophytic fungus Aspergillus sp. CCH-1E from Catharanthus roseus. The secondary metabolites from Aspergillus sp. CCH-1E were isolated by using various chromatographic methods [such as normal-phase and reversed-phase chromatography and high-performance liquid chromatography(HPLC)], and their structures were identified by various spectroscopic methods [e.g., ultraviolet(UV) spectroscopy, infrared(IR) spectroscopy, nuclear magnetic resonance(NMR) spectroscopy, and high-resolution electrospray ionization mass spectrometry(HR-ESI-MS)]. Twelve compounds were yielded and identified from Aspergillus sp. CCH-1E, which are chermesinone H(1), chermesinone I(2), chermesinone B(3), 8,11-didehydrochermesinone B(4), chermesinone C(5), chermesinone A(6), chevalone B(7), barbacenic acid(8), 3,6,8-trihydroxy-3,5,7-trimethyl-3,4-dihydroisocoumarin(9), 5-hydroxy-2-methoxy-7-methyl-1,4-naphthoquinone(10), 1-hydroxy-6,8-dimethoxy-3-methylanthracene-9,10-dione(11), and 7-drimen-9α,11,12-triol(12). Among them, compounds 1 and 2 are new compounds. The growth inhibition effects of all compounds were evaluated against non-small cell lung cancer cell lines A549 and NCI-H1650, as well as human cervical cancer cell line HeLa by using methylthiazolyldiphenyl-tetrazolium bromide(MTT). Compound 7 significantly inhibited the growth of three tumor cells with the IC_(50) values of 1.22-2.43 μmol·L~(-1), respectively. Compounds 1-6 showed moderate cell growth inhibition with the IC_(50) values of 16.24-35.28 μmol·L~(-1).