Abstract The wordwide energy demands and the surge towards a net-zero sustainable society let the researchers set a goal towards the end of carbon cycle. This has enormously exaggerated the electrocatalytic processes such as water splitting, CO2 capture and reduction and nitrogen reduction reaction (NRR) as a safe and green alternative as these involve the utilization of renewable green power. Interestingly, the NH3 produced from NRR has been realized as a future fuel in terms of safer green H2 storage and transportation. Nevertheless, to scale up the NH3 production electrochemically, a benevolent catalyst needs to be developed. More interestingly, the electronic features of the catalyst that actually contribute to the interaction and binding between the adsorbate and reaction intermediates should be analyzed such that these can be tuned based on our requirements to obtain the desired high-standard goals of NH3 synthesis. The current topical review aims to provide an illustrative understanding on the experimental and theoretical descriptors that are likely to influence the electronic structure of catalysts for NRR. We have widely covered a detailed explanation regarding work function, d-band center and electronic effect on the electronic structures of the catalysts. While summarizing the same, we realized that there are several discrepancies in this field, which have not been discussed and could be misleading for the newcomers in the field. Thus, we have briefed the limitations and diverging explanations and have provided a few directions that could be looked upon to overcome the issues.
Read full abstract