Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models.Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined.NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria.NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the “Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices”; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.
Read full abstract