We report the synthesis of the nitroxide-based triradical compound succinyl-DOTOPA and the characterization of its performance as a dopant for dynamic nuclear polarization (DNP) experiments in frozen solutions at low temperatures. Compared with previously described DOTOPA derivatives, succinyl-DOTOPA has substantially greater solubility in glycerol/water mixtures with pH > 4 and therefore has wider applicability. Solid state nuclear magnetic resonance (ssNMR) measurements at 9.39 T and 25 K, with magic-angle spinning at 7.00 kHz, show that build-up times of DNP-enhanced, cross-polarized 13C ssNMR signals are shorter and that signal amplitudes are larger for glycerol/water solutions of L-proline containing succinyl-DOTOPA than for solutions containing the biradical AMUPol, with electron spin concentrations of 15 mM or 30 mM, resulting in greater net sensitivity gains from DNP. In similar measurements at 90 K, AMUPol yields greater net sensitivity, apparently due to its longer electron spin-lattice and spin-spin relaxation times. One- and two-dimensional 13C ssNMR measurements at 25 K on the complex of the 27-residue peptide M13 with the calcium-sensing protein calmodulin, in glycerol/water with 10 mM succinyl-DOTOPA, demonstrate the utility of this compound in DNP-enhanced ssNMR studies of biomolecular systems.