<TEX>$MoO_3$</TEX>와 H-SAPO-34의 고체상 반응은 상자기성의 Mo(V) 화학종을 띤다. 탈수하면 Mo(V) 화학 종이 약하게 나타나지만 계속적으로 활성화 시키면 ESR로 규명할 수 있는 <TEX>$Mo(V)_{5c}$</TEX>와 <TEX>$Mo(V)_{6c}$</TEX>와 같은 Mo(V) 화학종이 생성된다. ESR과 ESEM 자료들은 <TEX>$(MoO_2)^+$</TEX>나 <TEX>$(MoO)^{3+}$</TEX> 같은 옥소-몰리브덴 화학 종을 보여준다. <TEX>$(MoO_2)^+$</TEX> 화학 종이 다음과 같이 더 합리적인 것 같이 보여진다. H-SAPO-34는 낮은 골격전하를 갖기 때문에 높은 양전하를 갖는 <TEX>$(MoO)^{3+}$</TEX>는 쉽게 안정화 되지 못한다. 소성된 H-SAPO-34와 도데카몰리브덴 규산 용액 사이의 용액 상태 반응은 단지 <TEX>$MoO^{2+}$</TEX> 화학 종만을 발생한다. 마름모형 ESR 신호는 <TEX>$D_2O$</TEX>, <TEX>$CD_3OH$</TEX>, <TEX>$CH_3CH_2OD$</TEX>와 <TEX>$ND_3$</TEX>를 흡착할 때 관측되었다. Mo(V) 화학 종의 배위구조와 위치는 트리 펄스 전자 스핀반향 자료로 측정하였다. MoH-SAPO-34에 메탄올, 에틸렌 암모니아와 물이 흡착될 때 3분자, 1분자, 1분자와 1분자가 <TEX>$(MoO_2)^+$</TEX>에 각각 직접 배위하였다. A solid-state reaction of <TEX>$MoO_3$</TEX> with as-synthesized H-SAPO-34 generated paramagnetic Mo(V) species. The dehydration resulted in weak Mo(V) species, and subsequent activation resulted in the formation of Mo(V) species such as <TEX>$Mo(V)_{5c}$</TEX> and <TEX>$Mo(V)_{6c}$</TEX> that are characterized by ESR. The data of ESR and ESEM show the oxomolybdenum species, to be <TEX>$(MoO_2)^+$</TEX> or <TEX>$(MoO)^{3+}$</TEX>. The <TEX>$(MoO_2)^+$</TEX> species seems to be more probable. Since H-SAPO-34 has a low framework negative charge, <TEX>$(MoO)^{3+}$</TEX> with a high positive charge can not be easily stabilized. A solution reaction between the solution of silico-molybdic acid and calcined H-SAPO-34 resulted in only <TEX>$(MoO_2)^+$</TEX> species. A rhombic ESR signal is observed on adsorption of <TEX>$D_2O$</TEX>, <TEX>$CD_3OH$</TEX>, <TEX>$CH_3Ch_2OD$</TEX> and <TEX>$ND_3$</TEX>. The Location and coordination structure of Mo(V) species has been determined by three-pulse electron spin-echo modulation data and their simulations. After the adsorption of methanol, ethylene, ammonia, and water for MoH-SAPO-34, three molecules, one molecule, one and one molecule, respectively, are directly coordinated to <TEX>$(MoO_2)^+)$</TEX>.
Read full abstract