An extensive analysis of the distribution patterns of three distinct classes of semi-volatile organic chemicals (SVOCs)-phthalates (PAEs), organophosphate flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs)-across four distinct size fractions of dust (25, 50, 100, and 200μm) was conducted. The dust samples were sourced from AC filter, covered car parking lots, households, hotels, mosques, and car floors. To generate the four fractions, ten dust samples from each microenvironment were pooled and sieved utilizing sieving apparatus with the appropriate mesh size. Selected SVOCs were quantified utilizing gas chromatography-mass spectrometry in electron impact (EI) mode. Results unveiled diverse contamination levels among dust fractions, showcasing car parking lot dust with the lowest chemical contamination, while car floor dust displayed the highest levels of PAHs and OPFRs, peaking at 28.3µg/g and 43.2µg/g, respectively. In contrast, mosque and household floor dust exhibited the highest concentrations of phthalates, with values of 985µg/g and 846µg/g, respectively. Across the analyzed microenvironments, we observed a trend where concentrations of SVOCs tended to rise as dust particles decreased in size, forming a visually striking pattern. This phenomenon was particularly pronounced in dust samples collected from car floors and parking lots. Among SVOCs, PAEs emerged as the predominant contributors with > 90% followed by OPFRs and PAHs. The high levels of OPFRs in car floor dust align logically with the fact that numerous interior components of cars are treated with OPFRs, within a compact indoor microenvironment, to comply to fire safety regulations. Furthermore, petroleum products are a major source of PAHs in the environment and all the sampled cars in the study had combustion engines. Consequently, car dust is more likely to be polluted with PAHs stemming from petroleum combustion. Although previous investigations have noted an increase in heavy metals and brominated flame retardants with decreasing dust particles, this is the first study analyzing these SVOCs in different fractions of dust from various microenvironments. However, aside from two specific microenvironments, the observed pattern of escalating SVOC concentrations with smaller dust particle sizes was not corroborated among the examined microenvironments. This divergence in concentration trends suggests the potential involvement of supplementary variables in influencing SVOC distributions within dust particles.
Read full abstract